1,082 research outputs found

    Incontinentia Pigmenti

    Get PDF
    Incontinentia pigment! (Bloch-Sulzberger syndrome) is a rare neuroectodermal dysptasia. It is an X-linked dominant disorder caused by mutations in the IKBKG/NEMO gene on Xq28. Approximately 80% of patients have a deletion of exons 4 to 10. Incontinentia pigmenti has an estimated incidence of 0.7 cases per 100,000 births. In hemizygous males, it is usually lethal, while in females, it has a wide spectrum of clinical manifestations. Incontinentia pigmenti is a muttisystemic disease that invariably features skin changes. These changes are the main diagnostic criteria and they evolve in 4 stages, in association with other abnormalities affecting the central nervous system, eyes, teeth, mammary glands, hair, nails, skin, and other parts of the body. The aim of this brief review is to highlight the clinical features of this genodermatosis and underline the importance of case-by-case interdisciplinary management, including genetic counseling. (C) 2018 AEDV. Published by Elsevier Espana, S.L.U. All rights reserved

    An XMM-Newton look at the strongly variable radio-weak BL Lac Fermi J1544-0639

    Full text link
    Fermi J1544-0639/ASASSN-17gs/AT2017egv was identified as a gamma-ray/optical transient on May 15, 2017. Subsequent multiwavelength observations suggest that this source may belong to the new class of radio-weak BL Lacs. We studied the X-ray spectral properties and short-term variability of Fermi J1544-0639 to constrain the X-ray continuum emission mechanism of this peculiar source. We present the analysis of an XMM-Newton observation, 56 ks in length, performed on February 21, 2018. The source exhibits strong X-ray variability, both in flux and spectral shape, on timescales of ~10 ks, with a harder-when-brighter behaviour typical of BL Lacs. The X-ray spectrum is nicely described by a variable broken power law, with a break energy of around 2.7 keV consistent with radiative cooling due to Comptonization of broad-line region photons. We find evidence for a `soft excess', nicely described by a blackbody with a temperature of ~0.2 keV, consistent with being produced by bulk Comptonization along the jet.Comment: 11 pages, 12 figures. Accepted for publication in Astronomy & Astrophysic

    Hard X-ray selected giant radio galaxies - I. The X-ray properties and radio connection

    Get PDF
    We present the first broad-band X-ray study of the nuclei of 14 hard X-ray selected giant radio galaxies, based both on the literature and on the analysis of archival X-ray data from NuSTAR, XMM-Newton, Swift and INTEGRAL. The X-ray properties of the sources are consistent with an accretion-related X-ray emission, likely originating from an X-ray corona coupled to a radiatively efficient accretion flow. We find a correlation between the X-ray luminosity and the radio core luminosity, consistent with that expected for AGNs powered by efficient accretion. In most sources, the luminosity of the radio lobes and the estimated jet power are relatively low compared with the nuclear X-ray emission. This indicates that either the nucleus is more powerful than in the past, consistent with a restarting of the central engine, or that the giant lobes are dimmer due to expansion losses.Comment: 11 pages, 3 figures. Accepted for publication in MNRA

    Broadband X-ray spectral analysis of the Seyfert 1 galaxy GRS 1734-292

    Get PDF
    We discuss the broadband X-ray spectrum of GRS 1734-292 obtained from non-simultaneous XMM-Newton and NuSTAR observations, performed in 2009 and 2014, respectively. GRS1734-292 is a Seyfert 1 galaxy, located near the Galactic plane at z=0.0214z=0.0214. The NuSTAR spectrum (3−803-80 keV) is dominated by a primary power-law continuum with Γ=1.65±0.05\Gamma=1.65 \pm 0.05 and a high-energy cutoff Ec=53−8+11E_c=53^{+11}_{-8} keV, one of the lowest measured by NuSTAR in a Seyfert galaxy. Comptonization models show a temperature of the coronal plasma of kTe=11.9−0.9+1.2kT_e=11.9^{+1.2}_{-0.9} keV and an optical depth, assuming a slab geometry, τ=2.98−0.19+0.16\tau=2.98^{+0.16}_{-0.19} or a similar temperature and τ=6.7−0.4+0.3\tau=6.7^{+0.3}_{-0.4} assuming a spherical geometry. The 2009 XMM-Newton spectrum is well described by a flatter intrinsic continuum (Γ=1.47−0.03+0.07\Gamma=1.47^{+0.07}_{-0.03}) and one absorption line due to Fe\textsc{XXV} Kα\alpha produced by a warm absorber. Both data sets show a modest iron Kα\alpha emission line at 6.46.4 keV and the associated Compton reflection, due to reprocessing from neutral circumnuclear material

    Poor clinical response in rheumatoid arthritis is the main risk factor for diabetes development in the short-term: A 1-year, single-centre, longitudinal study

    Get PDF
    Objectives Despite of the European League Against Rheumatism (EULAR) provided different sets of recommendations for the management of cardiovascular risk in inflammatory arthritis patients, it must be pointed out that cardiometabolic comorbidity, such as type 2 diabetes (T2D), remains still underdiagnosed and undertreated in patients affected by rheumatoid arthritis (RA). Methods In this work, we designed a single centre, prospective study in order to better investigate the occurrence of T2D during the course of 1 year of follow-up. Furthermore, we evaluated the role of both traditional cardiovascular and RA-specific related risk factors to predict the occurrence of new T2D. Results In this study, we evaluated 439 consecutive RA patients and we observed that 7.1% of our patients (31/439) developed T2D, after 12 month of prospective follow-up. The regression analysis showed that the presence of high blood pressure, the impaired fasting glucose (IFG) at the first observation and the poor EULAR-DAS28 response, after 12 months of follow\u2013up, were significantly associated with an increased likelihood of being classified as T2D. Similarly, we observed that 7.7% of our patients (34/439) showed IFG after 12 months of prospective follow-up. The regression analysis showed that the presence of high blood pressure and the poor EULAR-DAS28 response after 12 months of follow-up, were significantly associated with an increased likelihood of showing IFG. Conclusions Our study supports the hypothesis of a significant short-term risk of T2D in RA patients and of a close associations between uncontrolled disease activity and glucose metabolism derangement. Further multicentre, randomised-controlled studies are surely needed in order to elucidate these findings and to better ascertain the possible contribution of different therapeutic regimens to reduce this risk

    Epigenetic and Genetic Factors Related to Curve Progression in Adolescent Idiopathic Scoliosis: A Systematic Scoping Review of the Current Literature

    Get PDF
    Adolescent idiopathic scoliosis (AIS) is a progressive deformity of the spine. Scoliotic curves progress until skeletal maturity leading, in rare cases, to a severe deformity. While the Cobb angle is a straightforward tool in initial curve magnitude measurement, assessing the risk of curve progression at the time of diagnosis may be more challenging. Epigenetic and genetic markers are potential prognostic tools to predict curve progression. The aim of this study is to review the available literature regarding the epigenetic and genetic factors associated with the risk of AIS curve progression. This review was carried out in accordance with Preferential Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The search was carried out in January 2022. Only peer-reviewed articles were considered for inclusion. Forty studies were included; fifteen genes were reported as having SNPs with significant association with progressive AIS, but none showed sufficient power to sustain clinical applications. In contrast, nine studies reporting epigenetic modifications showed promising results in terms of reliable markers. Prognostic testing for AIS has the potential to significantly modify disease management. Most recent evidence suggests epigenetics as a more promising field for the identification of factors associated with AIS progression, offering a rationale for further investigation in this field

    Phospholipid hydroperoxide glutathione peroxidase is the 18-kDa selenoprotein expressed in human tumor cell lines.

    Get PDF
    Human tumor cell lines cultured in 75Se-containing media demonstrate four major 75Se-labeled cellular proteins (57, 22, 18, and 12 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Among these selenoproteins, an enzymatic activity is known only for the 22-kDa protein, since this protein has been identified as the monomer of glutathione peroxidase. However, all tested cell lines also contained a peroxidase activity with phospholipid hydroperoxides that is completely accounted for by the other selenoenzyme, phospholipid hydroperoxide glutathione peroxidase (PHGPX) (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of 75Se-labeled proteins separated by gel permeation chromatography supported the identification of PHGPX as the monomeric protein matching the 18 kDa band. This paper is the first report on the identification of PHGPX in human cells

    Molecular anatomy of the human glucose 6-phosphate dehydrogenase core promoter

    Get PDF
    The gene encoding glucose 6-phosphate dehydrogenase (G6PD), which plays a pivotal role in cell defense against oxidative stress, is ubiquitously expressed at widely different levels in various tissues; moreover, G6PD expression is regulated by a number of stimuli. In this study we have analyzed the molecular anatomy of the G6PD core promoter. Our results indicate that the G6PD promoter is more complex than previously assumed; G6PD expression is under the control of several elements that are all required for correct promoter functioning and, furthermore, a still unidentified mammalian specific factor is needed. Copyright (C) 1998 Federation of European Biochemical Societies
    • …
    corecore